Установки компенсации реактивной мощности. Выбор устройства компенсации реактивной мощности Компенсаторы реактивной мощности для дома

С пошаговым (ступенчатым) регулированием реактивной мощности, (современный аналог установок АУКРМ, УКМ, УКМ-58, УКРМ и других) мощностью от 10 кВАр до 2000 кВАр предназначены для автоматического и ручного регулирования коэффициента мощности нагрузки с широким диапазоном изменения потребления реактивной мощности в распределительных сетях трехфазного переменного тока частотой 50 Гц, напряжением от 230 до 690В. Применение КРМ-0,4 позволит значительно сократить завтраты на оплату электроэнергии от 30-50%, а так же позволит снизить нагрузку и увеличить срок эксплуатации оборудования. Компенсаторы реактивной мощности серии КРМ с помощью подключения определенной емкостной нагрузки - конденсаторов, снижают суммарную реактивную мощность, потребляемую из сети. Возможно применение нерегулируемых и регулируемых КРМ . Ступенчатые КРМ переключают секции конденсаторных батарей, обеспечивая оптимальную компенсацию реактивной мощности .

Компания "ВП-АЛЬЯНС" изготавливает следующие устройства компенсации реактивной мощности КРМ :

  • Компенсаторы реактивной мощности контакторные (серии КРМ );
  • Компенсаторы реактивной мощности тиристорные (серии КРМ-Т );
  • Компенсаторы реактивной мощности фильтрокомпенсирующие (серии КРМ-Ф );
  • Компенсаторы реактивной мощности фильтрокомпенсирующие тиристорные (Серии КРМ-ФТ )

Стандартное исполнение устройств компенсации реактивной мощности У3 степенью защиты IP31. При необходимости изготавливаем установки КРМ-0,4 исполнением УХЛ1, УХЛ2, УХЛ3 УХЛ4 степенью защита IP54, IP55 для установки в помещениях отапливаемых, подстанциях КТП и для размещения на улице с системой обогрева и вентиляции.

Экономический эффект от внедрения компенсатора реактивной мощности (КРМ) складывается из следующих составляющих:
1. Экономия на оплате реактивной энергии. Оплата за реактивную энергию составляет от 12% до 50% от
активной энергии в различных регионах России.
2. Для действующих объектов - уменьшение потерь энергии в кабелях за счет уменьшения фазных токов. В среднем, на действующих объектах в подводящих кабелях теряется 10…15% расходуемой активной энергии.
3. Для проектируемых объектов - экономия на стоимости кабелей за счет уменьшения их сечения.
4. При значительной загрузке силового трансформатора можно учитывать экономию от продления срока службы трансформаторов за счет снижения температуры перегрева обмоток.

Сборка установок компенсации реактивной мощности осуществляется на импортных комплектующих: Gruppo Energia, Lovato, Vmtec, Epcos, Schneider Electric и др.


Преимущества использования конденсаторных установок для компенсации реактивной мощности

  • малые удельные потери активной мощности (у современных низковольтных косинусных конденсаторов собственные потери не превышают 0,5 Вт на 1 кВАр);
  • отсутствие вращающихся частей;
  • простой монтаж и эксплуатация;
  • относительно невысокие капиталовложения;
  • возможность подбора практически любой необходимой мощности компенсации;
  • возможность установки и подключения в любой точке сети;
  • отсутствие шума во время работы;
  • небольшие эксплуатационные затраты.

Проблемы, которые помогут решить конденсаторные установки

Конденсаторные установки (УКМ, АКУ, АУКРМ, УКРМ, КРМ и другие модели) применяются не только для замедления вращения счетчика реактивной энергии. Помимо этого, с их помощью решается ряд других проблем, возникающих на производстве:

  • снижение загрузки силовых трансформаторов (при уменьшении потребления реактивной мощности понижается и потребление полной мощности);
  • обеспечение питания нагрузки по кабелю с меньшим сечением (не допуская перегрева изоляции);
  • за счет частичной токовой разгрузки силовых трансформаторов и питающих кабелей подключение дополнительной активной нагрузки;
  • позволяет избежать глубокой просадки напряжения на линиях электроснабжения удаленных потребителей (водозаборные скважины, карьерные экскаваторы с электроприводом, стройплощадки и т. д.);
  • возможность максимально использовать мощность автономных дизель-генераторов (судовые электроустановки, электроснабжение геологических партий, стройплощадок, установок разведочного бурения и т. д.);
  • облегчается пуск и работа асинхронных двигателей (при индивидуальной компенсации).

Преимущества автоматизированных конденсаторных установок при КРМ

  • автоматически отслеживается изменение реактивной мощности нагрузки в компенсируемой сети и в соответствии с заданным, корректируется значение коэффициента мощности - cosφ;
  • исключается генерация реактивной энергии в сеть (режим "перекомпенсации");
  • исключается появление в сети перенапряжения, т. к. нет перекомпенсации, возможной при использовании нерегулируемых конденсаторных установок;
  • визуально отслеживаются и выводятся на дисплей автоматического регулятора все основные параметры компенсируемой сети;
  • контролируется режим эксплуатации и работа всех элементов конденсаторной установки, в первую очередь батарей конденсаторов;
  • предусмотрена система аварийного отключения конденсаторной установки и предупреждения обслуживающего персонала;
  • возможно автоматическое подключение обогрева или вентиляции конденсаторной установки.

Где необходима компенсация реактивной мощности?

Широкое применение потребителей энергии с резкопеременной нагрузкой и несинусоидальным током, сопровождается значительным потреблением электрической мощности и искажением питающего напряжения, что приводит к росту потерь электроэнергии за счет низкого cos Ф и нарушению нормального функционирования потребления электроэнергии.

Это предприятия, где используются:

  • Асинхронные двигатели (cos Ф ~ 0.7)
  • Асинхронные двигатели, при неполной загрузке (cos Ф ~ 0.5)
  • Выпрямительные электролизные установки (cos Ф ~ 0.6)
  • Электродуговые печи (cos Ф ~ 0.6)
  • Водяные насосы (cos Ф ~ 0.8)
  • Компрессоры (cos Ф ~ 0.7)
  • Машины, станки (cos Ф ~ 0.5)
  • Сварочные трансформаторы (cos Ф ~ 0.4)

и производства:

  • Пивоваренный завод (cos Ф ~ 0.6)
  • Цементный завод (cos Ф ~ 0.7)
  • Деревообрабатывающее предприятие (cos Ф ~ 0.6)
  • Горный разрез (cos Ф ~ 0.6)
  • Сталелитейный завод (cos Ф ~ 0.6)
  • Табачная фабрика (cos Ф ~ 0.8)
  • Порты (cos Ф ~ 0.5)

Где необходимы тиристорные конденсаторные установки?

  • Сталеплавильные заводы
  • Лифтовое хозяйство
  • Портовые краны
  • Кабельные заводы (экструдеры)
  • Аппараты точечной сварки
  • Роботы
  • Компрессоры
  • Горнолыжные подъемники
  • 0,4 кВ промышленные сети химических заводов, бумажных фабрик,

А также там, где нужны эргономичные - малошумные (не контакторные) решения:

  • Гостиницы
  • Банки
  • Офисы
  • Больницы
  • Торговые центры
  • Телекоммуникационные компании

Недостатки традиционных КРМ-0,4 по сравнению с тиристорными конденсаторными установками КРМ-Т-0,4:

  1. Высокий коммутационный ток и перенапряжения конденсаторов
  2. Риск возникновения коммутационных перенапряжений
  3. Большое время повторного включения ступени > 30 c
  4. Необходимость более частого проведения регламентного обслуживания (например: протяжка болтовых соединений, ослабляющихся из-за вибраций контакторов)

Достоинства тиристорных конденсаторных установок:

  • Снижение потерь в линиях и силовых трансформаторах
  • Увеличение доступных мощностей (кВт) завода
  • Меньшие падения напряжения на предприятии
  • Минимизация аномалий в электросети таких как фликер и падение напряжения
  • Отсутствие движущихся частей и как следствие увеличение регламентного интервала
  • Увеличение срока службы конденсаторов минимум в 1,5 раза

Так как тиристорная конденсаторная установка компенсирует реактивную мощность практически мгновенно, то силовой трансформатор работает на активную нагрузку, что увеличивает его срок службы. Статические тиристорные контакторы не имеют ограничений по числу коммутаций.

Компенсаторы реактивной мощности серии КРМ-Ф


Качество электроэнергии имеет большое значение для многих потребителей. В существующей системе электроснабжения предприятия (СЭСП) присутствует определенный уровень гармонических составляющих, зависящий от мощности и количества нелинейных электроприемников (преобразователь, дуговая печь, сварочная установка).
Повсеместное внедрение силовой преобразовательной техники (СПТ), например, частотно регулируемых приводов станций управления погружными насосами ЭЦН (ЧРП СУ), ставит перед предприятиями проблему искажения кривой питающего напряжения высшими гармониками, генерируемыми СПТ.
Многие производители (ЧРП), делая попытку сэкономить при внедрении частотных приводов, не оснащают их выходными фильтрами. Впоследствии таким предприятиям приходится решать проблему очень сильного засорения питающего напряжения высшими гармониками.
Высокое содержание высших гармонических составляющих в сети предприятия снижает коэффициент мощности, проводит к перегреву и обусловленному этим преждевременному старению изоляции и выходу из строя элементов СЭС, ложным срабатываниям защит, перебоям в сети работы компьютерного оборудования и т.д. Конденсаторная установка, подключаемая к СЭСП образует, вместе с силовым трансформатором резонансный контур, который может оказаться, настроен на одну из гармоник присутствующих в сети.
Частоты резонанса, конденсаторной установки и понижающего трансформатора 6/0,4 кВ 10/0,4 кВ находятся, как правило, в диапазоне от 150 до 500 Гц. Если с этим резонансом не бороться, мы сталкиваемся с такой проблемой как перегрузка конденсаторов, силовых трансформаторов, и другого распределительного оборудования, а также резонансное усиление гармоник. Чтобы избежать неприятностей с резонансами силовых трансформаторов и конденсаторов необходимо использовать трехфазные дроссели подключаемые последовательно с конденсаторами. Частота резонанса такого контура должна быть ниже, частоты самых низших гармоник присутствующих в сети. Для гармоник с частотами выше, чем частота контура образованного конденсатором и дросселем, резонанс не возникает.
Трехфазные дроссели предназначены для работы в составе конденсаторных установок, включаются последовательно с конденсаторами, и служат для отстройки от частоты превалирующей в сети гармоники, для предотвращения перегрева и пробоя конденсаторов. Как известно, при повышении частоты приложенного напряжения к конденсатору его сопротивление снижается. Поэтому используются дроссели которые вместе с конденсатором образуют контур отстроенный от частоты гармоники и подавляющий ее.
В настоящее время такие дроссели эффективно используются в сетях содержащих гармоники с 5-ой и выше - используются дросселя с расстройкой 14 % = 134 Гц и конденсаторы номинальным напряжением 525 В, и в сетях с гармониками с 7 ой и выше - используются дросселя с расстройкой 7 % = 189 Гц и конденсаторы номинальным напряжением 525 В.
Эти неприятные последствия (насыщение и перегрев трансформаторов, подгорание контактных соединений, сбои в работе электронных блоков автоматических выключателей и оборудования оснащенного ЧПУ) можно исключить.
Для этого, перед внедрением на предприятии установок компенсации реактивной мощности, необходимо произвести замеры качества электроэнергии, выявить присутствующие в сети гармоники и просчитать возможные резонансы при таком внедрении.
В случае возможности резонансных явлений, применение автоматических конденсаторных установок возможно только с фильтрующими дросселями на каждой ступени - КРМ-Ф

Конденсаторная установка (КУ, или УКРМ - установка компенсации реактивной мощности) - согласно действующему , это электроустановка, состоящая из конденсаторов и относящегося к ней вспомогательного электрооборудования (регулятора реактивной мощности, контакторов, предохранителей и т. д.).

Выбор режима компенсации

По месту установки КУ различают следующие виды компенсации: централизованная на высокой стороне (а), централизованная на низкой стороне (б), групповая (в) и индивидуальная (г) (см. рисунок ниже).

  • При централизованной компенсации на стороне высокого напряжения , когда конденсаторная установка присоединяется к шинам 6-10 кВ трансформаторной подстанции, получается хорошее использование конденсаторов, их требуется меньше и стоимость 1 квар установленной мощности получается минимальной по сравнению с другими способами. При компенсации по этой схеме разгружаются от реактивной мощности только расположенные выше звенья энергосистемы, а внутризаводские распределительные сети и даже трансформаторы подстанции остаются не разгруженными от реактивной мощности, а следовательно, потери энергии в них не уменьшаются и мощности трансформаторов на подстанции не могут быть уменьшены.
  • При централизованной компенсации на стороне низкого напряжения , когда конденсаторная установка присоединяется к шинам 0,4 кВ трансформаторной подстанции, от реактивной мощности разгружаются не только вышерасположенные сети 6—10 кВ, но и трансформаторы на подстанции, однако внутризаводские распределительные сети 0,4 кВ остаются неразгруженными.
  • При групповой компенсации , когда конденсаторные установки устанавливаются в цехах и присоединяются непосредственно к цеховым распределительным пунктам (РП) или шинам 0,4 кВ, разгружаются от реактивной мощности и трансформаторы на подстанции и питательные сети 0,4 кВ Неразгруженными остаются только распределительные сети к отдельным электроприемникам. В целях равномерного распределения компенсирующих устройств целесообразно подключать конденсаторную установку к шинам РП таким образом, чтобы реактивная нагрузка этого РП составляла более половины мощности подключаемой конденсаторной установки.
  • При индивидуальной компенсации, когда конденсаторная установка подключается непосредственно к зажимам потребляющего реактивную мощность электроприемннка, что является основным требованием создания реактивной мощности по возможности ближе к месту ее потребления, такой способ будет наиболее эффективным в отношении разгрузки от реактивной мощности питательной и распределительной сетей, трансформаторов и сетей высшего напряжения. При индивидуальной компенсации происходит саморегулирование выработки реактивной мощности, так как конденсаторные установки включаются и отключаются одновременно с приводными электродвигателями машин и механизмов.

Практически распространенными способами компенсации реактивной мощности электроснабжения промышленных предприятий является групповая компенсация, возможны также варианты комбинированного размещения конденсаторных установок.
Определение наивыгоднейших решений выбора способа компенсации реактивной мощности производится на основании технико-экономических расчетов тщательных исследований производственных условий, факторов конструктивного характера и т. д..
При выборе места размещения конденсаторной установки в распределительной сети необходимо учитывать ее влияние на режим напряжения и величину потерь энергии в сети. Как правило, компенсация реактивной мощности должна производиться в той же сети (на том же напряжении), где она потребляется, при этом будут минимальные потери энергии, а следовательно, и меньшие мощности трансформаторов.

Выбор типа компенсации

В зависимости от требований к характеристикам оборудования и сложности управления, КРМ может быть следующих типов:

  • нерегулируемой - путем подключения конденсаторной батареи фиксированной емкости;
  • автоматической - путем включения различного количества ступеней регулирования для подачи требуемой реактивной энергии;
  • динамической - для компенсации быстро изменяющихся нагрузок.
Нерегулируемая компенсация

В схеме используется один или несколько конденсаторов, обеспечивающих постоянный уровень компенсации. Управление может быть:

  • ручным: с помощью автоматического выключателя или выключателя нагрузки;
  • полуавтоматическим: с помощью кнопок и контактора;
  • прямое подсоединение к нагрузке и включение/отключение вместе с ней.

Конденсаторы присоединяются:

  • к вводным зажимам индуктивных нагрузок (в основном, электродвигателей);
  • к шинам, питающим группы небольших электродвигателей или индуктивных нагрузок, для которых индивидуальная компенсация может быть довольно дорогостоящей;
  • в случаях, когда коэффициент нагрузки должен быть постоянным.
Автоматическая компенсация

Данный тип компенсации предусматривает автоматическое поддержание заданного cos φ путем регулирования количества вырабатываемой реактивной энергии в соответствии с изменениями нагрузки.
Оборудование КРМ устанавливается и подключается к тем местам электроустановки, где изменения активной и реактивной мощности относительно велики, например:

  • к сборным шинам главного распределительного щита;
  • к зажимам кабеля, питающего мощную нагрузку.

Нерегулируемая компенсация применяется там, где требуется компенсировать реактивную мощность, не превышающую 15% номинальной мощности трансформаторного источника питания. Если требуется компенсировать более 15%, рекомендуется устанавливать конденсаторную батарею с автоматическим регулированием.
Управление обычно осуществляется электронным устройством (контроллером реактивной мощности), которое отслеживает фактический коэффициент мощности и выдает команды на подключение или отключение конденсаторов для достижения заданного коэффициента. Таким образом, реактивная энергия регулируется ступенчато. Кроме того, регулятор реактивной мощности выдает информацию о характеристиках электросети (амплитуда напряжения, уровень искажений, коэффициент мощности, фактическая активная и реактивная мощность) и состоянии оборудования.
В случае неисправности подаются аварийные сигналы. Подключение обычно обеспечивается контакторами. Для быстрой и частой коммутации конденсаторов при компенсации сильно изменяющихся нагрузок следует использовать полупроводниковые ключи.

Динамическая компенсация

Данный тип КРМ используется для предотвращения колебаний напряжения в сетях с изменяющимися нагрузками. Принцип динамической компенсации заключается в том, что вместе с нерегулируемой конденсаторной батареей используется электронный компенсатор реактивной мощности, обеспечивающий опережение или запаздывание реактивных токов относительно напряжения. В результате получается быстродействующая изменяющаяся компенсация, хорошо подходящая для таких нагрузок, как лифты, дробилки, аппараты точечной сварки и т. д.

Учет условий эксплуатации и содержания гармоник в сети

Конденсаторные установки следует выбирать с учетом условий эксплуатации на протяжении всего срока службы комплектующих, в первую очередь конденсаторов и контакторов.

Учет условий эксплуатации

Условия эксплуатации оказывают значительное влияние на срок службы конденсаторов.
Следует учитывать следующие параметры:

  • температура окружающей среды (°C);
  • ожидаемые повышенные токи, связанные с искажением формы напряжения, включая максимальное непрерывное перенапряжение;
  • максимальное количество коммутационных операций в год;
  • требуемый срок службы.
Учет воздействия гармоник

В зависимости от амплитуды гармоник в электросети применяются различные конфигурации устройств КРМ:

  • Стандартные конденсаторы: при отсутствии значительных нелинейных нагрузок.
  • Конденсаторы увеличенного номинала: при наличии незначительных нелинейных нагрузок. Номинальный ток конденсаторов должен быть увеличен, чтобы они могли выдерживать циркуляцию токов гармоник.
  • Конденсаторы увеличенного номинала с антирезонансными дросселями применяются при наличии многочисленных нелинейных нагрузок. Дроссели необходимы для подавления циркуляции токов гармоник и предотвращения резонанса.
  • Фильтры высших гармоник: в сетях с преобладанием нелинейных нагрузок, где требуется подавление гармоник. Обычно фильтры конструируются для конкретной электроустановки, исходя из результатов измерений на месте и компьютерной модели электросети.

Комплектующие к УКРМ

Конденсаторы

Конденсаторы всходят в состав любой установки компенсации реактивной мощности (нерегулируемой или автоматической) и используются для корректировки коэффициента мощности индуктивных потребителей (трансформаторов, электрических двигателей, ректификаторов) в электрических сетях для напряжений до 660 В.

Конструкция

Самые популярные компенсации реактивной мощности состоят из цилиндрического алюминиевого корпуса, внутри которого смонтированы три однофазных конденсатора соединенные по схеме "треугольник" (см.рис. вариант а). Подключение осуществляется через три клеммы. Также существуют модели (например от Legrand) с шестью клеммами (см.рис. вариант б) они позволяют подключать контактор в разрыв треугольника. Что в свою очередь позволяет взять контактор меньшего номинала.

В корпусе конденсатора установлен диэлектрик с тремя полипропиленовыми слоями, металлизированными алюминием и цинком. Данное покрытие обеспечивает низкий уровень потерь и высокую устойчивость к высоким импульсным токам, а также способствует самовосстановлению конденсатора при пробое. В зависимости от величины рабочего напряжения полипропиленовая пленка имеет различную толщину. При этом слои металлизации выступают в роли проводников тока (т.е. обкладок), а полипропилен является диэлектриком. После выполнения необходимых технологических операций и прохождения контроля качества емкостные элементы (рулоны) помещаются в алюминиевые цилиндрические корпуса и заливаются полиуретановой смолой, нетоксичной и обладающей высокими экологическими свойствами.

Технология производства и самовосстановление конденсаторов

Исходным материалом для производства конденсаторов служит полипропиленовая пленка. В начале технологического процесса происходит металлизация полипропиленовой пленки для формирования на ней токопроводящего слоя толщиной 10-50 нм из смеси цинка и алюминия. Применение материала с указанными характеристиками позволяет добиться получения эффекта самовостановления в случае возникновения пробоя диэлектрика между обкладками конденсатора. При этом электрическая энергия испаряет металл вокруг поврежденного места и тем самым предотвращает короткое замыкание. Потеря емкости в течении данного процесса, совсем незначительна (около 100pF). Способность к самовосстановлению гарантирует высокую операционную надежность и длительный срок эксплуатации конденсатора. Для сведения к минимуму тангенса угла диэлектрических потерь, на торцы конденсаторных секций наносится в два слоя покрытие из цинка, которое получило название цинковый крепленый край. За счет этого достигается более плотный контакт между выводами конденсатора и конденсаторной секцией.


Защита от избыточного давления

Для обеспечения защиты внутренних элементов конденсатора, у большинства производителей, применяется встроенный разъединитель, который срабатывает при возникновении избыточного давления. Назначением устройства является прерывание тока короткого замыкания при достижении конденсатором окончания срока службы и его неспособности к последующему восстановлению. Это устройство разрывает электрическую цепь конденсатора, используя внутреннее давление, которое возникает во время разрушения пленки от перегрева, вызванного током короткого замыкания.

Применение конденсаторов с номинальным напряжением выше 400В.

Так как напряжение напрямую влияет на реактивную мощность конденсатора, компании предлагают линейки конденсаторов с разными номинальными напряжениями Un - 400, 440, 460, 480, 525В.
В сетях 380В, со стабильными параметрами напряжения сети, рекомендовано применять конденсаторы с Un - 400В, в этом случае применение конденсаторов с Un - 440В и выше нецелесообразно, потому что номинальная мощность существенно уменьшается (примерные поправочные коэффициенты 230V - 1.74 / 440V - 0.91 / 480V - 0.83 / 525V - 0.76)
Согласно стандарта EN-60831.1-2, конденсаторы на промышленной частоте должны выдерживать напряжение величиной l,10*Un (1.10*400 = 440В) в течение не менее 8 часов в сутки. В случаях, когда повышенное напряжение сети сохраняется более 8 часов, необходимо применять конденсаторы с Un - 440В. Применение данного типа конденсатора гарантирует надежную работу в сети с повышенным напряжением и увеличение срока службы конденсатора.

Внимание! Остаточное напряжение

После отсоединения конденсатора от сети на его выводах еще присутствует остаточное напряжение, которое представляет опасность для обслуживающего персонала. Для его устранения все трехфазные конденсаторы снабжены разрядными сопротивлениями, которые снижают уровень напряжения до уровня меньше чем 75В за 3 минуты.

Внимание! Защита от перегрева

Для обеспечения надежного естественного охлаждения, расстояние между конденсаторными батареями должно быть: 2,5 - 25 kVAr не менее 25мм. 30 - 50 kVAr не менее 50мм.

Предохранители

Предохранители всходят в состав любой установки компенсации реактивной мощности (нерегулируемой или автоматической) и используются для защиты от коротких замыканий. Наиболее применяемые предохранители имеют формат NH.

Фильтрующие дроссели

Трехфазные дроссели предназначены для работы в составе конденсаторных установок, включаются последовательно с конденсаторами и используются как защитное, фильтрующее устройство от влияния высших гармоник на сеть потребителя и на конденсатор. При повышении частоты приложенного напряжения к конденсатору его сопротивление снижается, поэтому применяются дроссели, которые вместе с конденсатором образуют контур, отстроенный от частоты гармоники и подавляющий ее. Частота резонанса такого контура должна
быть ниже частоты самых низших гармоник, присутствующих в электросети. При наличии гармоник с частотами выше, чем частота контура, образованного конденсатором и дросселем, резонанс не возникает.
Стандартные значения коэффициента отстройки составляют 5,67%, 7% и 14% при резонансных частотах 210,189 и 134 Гц в сетях с номинальной частотой 50Гц. При таких стандартных значениях величин в трехфазной сети и симметричной нагрузке становится возможным устранить 5-ю (250Гц) и гармоники высших порядков. Это позволяет избежать резонанса между индуктивным сопротивлением и трехфазными конденсаторами, включенными для корректировки коэффициента мощности, и предотвращения перегрузки конденсаторных батарей.
Часто дроссели оборудованы биметаллическим тепловым реле, которое встроено в центральную обмотку и имеет выводы на отдельные клеммы. Датчик реле срабатывает при температуре выше 90°С.

Навязчивая реклама в интернете и даже на государственных каналах телевидения через телемагазин настойчиво предлагает населению устройство для экономии электроэнергии в виде «новинок» электронной промышленности. Пенсионерам предоставляется скидка 50 % от общей стоимости.

«Saving Box» — так называется один из предлагаемых приборов. О них уже писалось в статье . Пришла пора продолжить тему на примере конкретной модели, объяснив более подробно:

    что такое реактивное сопротивление;

    каким образом создается активная и реактивная мощность;

    как осуществляется компенсация реактивной мощности;

    на основе чего работают компенсаторы реактивной мощности и устройство для экономии электроэнергии.

Людям, купившим такое устройство, приходит по почте посылка с красивой коробочкой. Внутри расположен элегантный пластмассовый корпус с двумя светодиодами на лицевой стороне и вилкой для установки в розетку — с обратной.

Чудо-прибор для экономии электроэнергии (для увеличения нажмите на рисунок):

На приложенной фотографии показаны заявленные производителем характеристики: 15000 Вт при напряжении в сети от 90 до 250 В. Оценим их с точки зрения электрика-практика по приведенным под картинками формулам.

При наименьшем указанном напряжении такое устройство должно пропускать через себя ток 166,67 А, а при 250 В — 60 А. Сравним полученные расчеты с нагрузками сварочных аппаратов переменного напряжения.

Ток сварки для стальных электродов диаметром 5 мм составляет 150÷220 ампер, а для толщины 1,6 мм достаточно — 35÷60 А. Эти рекомендации есть в любом справочнике электросварщика.

Вспомните вес и габариты сварочного аппарата, который варит электродами 5 мм. Сравните их с пластмассовой коробочкой, величиной с зарядное устройство мобильного телефона. Подумайте, почему от тока 150 А плавятся стальные электроды 5 мм, а остаются целыми контакты вилки этого «прибора», да и вся проводка в квартире?

Чтобы понять причину такого несоответствия, пришлось вскрыть корпус, показав «внутренности» электроники. Там кроме платы для подсветки светодиодов и предохранителя размещена еще одна пластиковая коробочка, для бутафории.

Внимание! В этой схеме отсутствует устройство для экономии электроэнергии или ее компенсации.

Неужели обман? Попробуем разобраться с помощью основ электротехники и действующих промышленных компенсаторов электроэнергии, работающих на предприятиях энергетики.

Принципы электроснабжения

Рассмотрим типовую схему подключения к генератору переменного напряжения потребителей электричества, как маленький аналог питающей электросети квартиры. Для наглядности его характеристик индуктивности, емкости и активной нагрузки показаны , и . Будем считать, что они работают в установившемся режиме при прохождении по всему контуру тока одной величины I.

Электрическая схема (для увеличения нажмите на рисунок):

Здесь энергия генератора с напряжением U распределится составными частями на:

    обмотку индуктивности UL;

    обкладки конденсатора UC;

    активное сопротивление ТЭН UR.

Если представить рассматриваемые величины векторной формой и выполнить их геометрическое сложение в полярной системе координат, то получится обыкновенный треугольник напряжений, в котором величина активной составляющей UR по направлению совпадает с вектором тока.

UХ образован сложением падений напряжений на обмотке индуктивности UL и обкладках конденсатора UС. Причем это действие учитывает их направление.

В итоге получилось, что вектор напряжения генератора U отклонен от направления тока I на угол φ.

Еще раз обратите внимание на то, что ток в цепи I не меняется, он одинаков на всех участках. Поэтому разделим составляющие треугольника напряжений на величину I. На основании закона Ома получим треугольник сопротивлений.

Общее сопротивление индуктивности XL и емкости ХС принято называть термином «реактивное сопротивление» Х. Приложенное к клеммам генератора полное сопротивление нашей цепи Z состоит из суммы активного сопротивления ТЭН R и реактивного значения Х.

Выполним другое действие — умножение векторов треугольника напряжений на I. В итоге преобразований формируется треугольник мощностей. Активная и у него создают полную приложенную величину. Суммарная энергия, выдаваемая генератором S, расходуется на активную Р и реактивную Q составляющие.

Активная часть расходуется потребителями, а реактивная выделяется при магнитных и электрических преобразованиях. Емкостные и индуктивные мощности потребителями не используются, но нагружают токопроводы с генераторами.

Внимание! Во всех 3-х прямоугольных треугольниках сохраняются пропорции между сторонами, а угол φ не меняется.

Теперь будем разбираться, как проявляется реактивная энергия и почему счетчики бытовые ее не учитывали.

Что такое компенсация реактивной мощности в промышленности?

В энергетике страны, а более точно — государств целого континента, производством электричества занято огромнейшее число генераторов. Среди них встречаются как простые самодельные конструкции мастеров-энтузиастов, так и мощнейшие промышленные установки ГЭС и атомных станций.

Вся их энергия суммируется, трансформируется и распределяется конечному потребителю по сложнейшим технологиям и транспортным магистралям на огромные расстояния. При таком способе передачи электрический ток проходит через большое количество индуктивностей в виде обмоток трансформаторов/автотрансформаторов, реакторов, заградителей и других устройств, создающих индуктивную нагрузку.

Воздушные провода, а особенно кабели, создают в цепи емкостную составляющую. Ее величину добавляют различные конденсаторные установки. Металл проводов, по которым протекает ток, обладает активным сопротивлением.

Таким образом, сложнейшая энергетическая система может быть упрощена до рассмотренной нами схемы из генератора, индуктивности, активной нагрузки и емкости. Только ее необходимо еще объединить в три фазы.

Задача энергетики — дать потребителю качественное электричество. Применительно к конечному объекту это подразумевает подачу на вводной щиток электроэнергии напряжением 220/380 В, частотой 50 Гц с отсутствием помех и реактивных составляющих. Все отклонения этих величин ограничены требованиями ГОСТ.

При этом потребителя интересует не реактивная составляющая Q, создающая дополнительные потери, а получение активной мощности Р, которая совершает полезную работу. Для характеристики качества электричества пользуются безразмерным отношением Р к приложенной энергии S, для чего применяется косинус угла φ. Активную мощность Р учитывают все бытовые электрические счетчики.

Устройства компенсации электрической мощности приводят в норму электроэнергию для распределения между потребителями, уменьшают до нормы реактивные составляющие. При этом также осуществляется «выравнивание» синусоид фаз, в которых убираются частотные помехи, сглаживаются последствия переходных процессов при коммутациях схем, нормализуется частота.

Промышленные компенсаторы реактивной мощности устанавливаются после вводов трансформаторных подстанций перед распределительными устройствами: через них пропускается полная мощность электроустановки. Как пример, смотрите фрагмент однолинейной электросхемы подстанции в сети 10 кВ, где компенсатор принимает токи от АТ и только после его обработки электричество поступает дальше, а нагрузка на источники энергии и соединительные провода уменьшается.

Вернемся на мгновение к прибору «Saving Box» и зададим вопрос: как он может компенсировать мощности при расположении в конечной розетке, а не на вводе в квартиру перед счетчиком?

Смотрите на фото, как внушительно выглядят промышленные компенсаторы. Они могут создаваться и работать на разной элементной базе. Их функции:

    плавное регулирование реактивной составляющей с быстродействующей разгрузкой оборудования от перетоков мощностей и снижения потерь энергии;

    стабилизация напряжения;

    повышение динамической и статистической устойчивости схемы.

Выполнение этих задач обеспечивает надежность электроснабжения и уменьшение затрат на конструкцию тоководов нормализацией температурных режимов.

Что такое компенсация реактивной мощности в квартире?

Электроприборы домашней электрической сети также обладают индуктивным, емкостным и активным сопротивлением. Для них справедливы все соотношения рассмотренных выше треугольников, в которых присутствуют реактивные составляющие.

Только следует понимать, что они создаются при прохождении тока (учитываемого счетчиком, кстати) по уже подключенной в сеть нагрузке. Генерируемые индуктивные и емкостные напряжения создают соответствующие реактивные составляющие мощности в этой же квартире, дополнительно нагружают электропроводку.

Их величину никак не учитывает старый индукционный счетчик. А вот отдельные статические модели учета способны ее фиксировать. Это позволяет точнее анализировать ситуацию с токовыми нагрузками и термическим воздействием на изоляцию при работе большого количества электродвигателей. Емкостное напряжение, создаваемое бытовыми приборами, очень маленькое, как и ее реактивная энергия и счетчики ее часто не показывают.

Компенсация реактивной составляющей в таком случае заключается в подключении конденсаторных установок, «гасящих» индуктивную мощность. Они должны подключаться только в нужный момент на определенный промежуток времени и иметь свои коммутационные контакты.

Такие компенсаторы реактивной мощности имеют значительные габариты и подходят больше для производственных целей, часто работают с комплектом автоматики. Они никак не снижают потребление активной мощности, не могут сократить оплату электроэнергии.

Заключение

Заявленные производителем возможности и технические характеристики «Saving Box» не соответствуют действительности, используются для рекламы, построенной на обмане.

Обществу защиты прав потребителей и правоохранительным органам давно пора принять меры к прекращению продаж в стране некачественной продукции хотя бы через государственные каналы информации.

Компенсатор реактивной мощности (КРМ-0.4) - высокоэффективное электроустановочное оборудование для рационального использования электрической энергии. Устройства предназначены для автоматического компенсирования реактивной составляющей, стабилизации напряжения сети и обеспечения электромагнитной совместимости потребителей.

В современном мире огромное внимание, в том числе и государственное, уделяется качеству потребляемой электроэнергии. Связано это с тем, что от качества потребляемой электроэнергии напрямую зависят расходы предприятия, надежность работы систем питания и сам процесс производства.

Проблема наличия в системах электросетей существенной доли реактивной мощности, напрямую влияет на качество электроэнергии. Дело в том, что приемники электроэнергии потребляют как активную так и реактивную мощность, которая не связанна с полезной работой. Именно поэтому, уменьшение доли реактивной мощности в электрической системе значительно снижает потери активной, тем самым позволяя экономить на электроэнергии.

В результате работы оборудования повышается общий коэффициент мощности сети cos (φ) и выполняется поддержание его на заданном уровне. Установка компенсации реактивной мощности состоит из модульных конденсаторных батарей, которые отключаются и включаются с помощью контакторов. Последние оснащены устройствами, ограничивающими пик тока включения.

Плюсы от использования КРМ 04 :

Повышение коэффициента мощности до 98%;
Стабилизация сетевого напряжения;
Исключает платежи за реактивную электроэнергию, снижает до 15% расходы на активную электроэнергию;
Снижение на 10% затрат топлива при использовании автономного источника электроэнергии;
Ускорение работы электроприводов и технологического оборудования;
Разгрузка распределительных сетей от реактивного тока;
Снижение сетевых помех и уменьшение асимметрии фаз.
Характеристики электроустановочного оборудования

Компания "ВП-АЛЬЯНС" предлагает высокотехнологичное оборудование собственного производства на базе отечественных и импортных комплектующих для снижения затрат на электроэнергию:

1. Установка компенсации реактивной мощности (КРМ-0.4кВ) для электроустановок промышленных предприятий и распределительных сетей. Мощность составляет от 10 до 2000 кВАр, входное напряжение 0,4 кВ. Устройства позволяют значительно увеличить потребляемую мощность без реконструкции энергосистемы. КРМ используются не только для снижения затрат на электроэнергию, но и для стабилизации скачков напряжения на удаленных объектах.
2. Высоковольтные установки компенсации реактивной мощности 6кВ, 10кВ для поддержания коэффициента cos (φ) на заданном уровне в трехфазных электрических сетях. Мощностью от 100 до 3000 кВАр, входное напряжения 6,3 кВ и 10,5кВ.
3. Регуляторы предназначены для эффективного контроля коэффициента мощности cos (φ), анализа и контроля гармоник. Оборудование оснащено цифровым микропроцессором, релейными выходами и выбором ступеней.
4. Цилиндрические конденсаторные батареи мощностью от 1кВАр до 62,5 кВАр. Оборудование производится из высококачественных материалов и компонентов.
5. Контакторы предназначены для включения и выключения конденсаторов с целью их защиты. Устройства оснащены ограничивающими резисторами и могут использоваться в установках с несколькими ступенями.
6. Фильтры-дроссели гармоник позволяют очистить электрическую сеть от высших гармоник, улучшить показатели сети и снизить расходы на электроэнергию.

Экономия энергоносителей – одна из главных задач современной цивилизации. Все больше статей появляется в интернете об экономии электроэнергии методом компенсации Действительно, для промышленных предприятий данный процесс актуален, так как экономит денежные средства. Довольно много людей начинает задумываться, если промышленные предприятия экономят на реактивной составляющей, возможна ли экономия на этом в быту, путем компенсации реактивной составляющей в мастерской, на даче или в квартире.

Я наверное вас разочарую – это невозможно сделать, по нескольким причинам:

  1. , которые устанавливаются для частных потребителей, ведут учет только активной мощности;
  2. Учет за реактивной составляющей ведется только на больших промышленных предприятиях, для частных потребителей этот учет не ведется;
  3. Такая энергия не выполняет абсолютно никакой полезной работы, а только греет провода и другие устройства;

Да, в бытовых условиях возможна установка фильтров, это снизит суммарный ток в цепи, уменьшит падение напряжения. При пуске устройств большой мощности (пылесосы, холодильники) бытовые компенсаторы реактивной мощности снижают пусковой ток. Довольно просто собрать компенсатор реактивной мощности своими руками в домашних условиях. Для этого необходимо рассчитать реактивную мощность для однофазного устройства:

Для этого вам необходимо произвести замеры напряжения и тока цепи. Как найти cosφ? Очень просто:

Р – активная мощность устройства (указывается на самом устройстве)

f- частота сети.

Подбираем конденсаторы для бытового компенсатора реактивной мощности по емкости, напряжению, роду тока. Конденсаторы вешаются параллельно нагрузке.

Снижение суммарного тока снизит нагрев и позволит максимально использовать мощность цепи. Но, на промышленных предприятиях cosφ строго регламентирован, и контролируется в большинстве случаев автоматически, то есть при выводе какого-либо устройства с работы cosφ все равно поддерживается в заданном диапазоне. Представьте, что вы рассчитали в вашей квартире, сделали компенсатор и подключили в цепь. Но через некоторое время отключился потребитель (например, холодильник) и баланс сети нарушился. Теперь вы не компенсируете, а генерируете реактивную энергию обратно в сеть, тем самым негативно влияя на работу других потребителей. Для того чтобы сохранять баланс необходимо постоянно следить за работой различных устройств. В быту автоматизировать данный процесс слишком дорого и лишено смысла, так как это не позволит вам вернуть деньги даже за компенсатор.

Можно сделать вывод что компенсация реактивной мощности в быту бессмысленна, так как не позволит сэкономить средства, а установка нерегулируемого компенсатора может привести к перекомпенсации и как следствие только ухудшить коэфициент мощности сети cosφ.

Если вы хотите экономить электроэнергию следует пользоваться старыми надежными способами:

  1. Покупать бытовую технику класса А или В;
  2. Выключать свет и бытовые приборы (исключение холодильник) когда уходите из дома;
  3. Заменить лампы накаливания на энергосберегающие. Они и служат дольше и потребляют меньше;
  4. Если пользуетесь электрочайником – кипятите столько воды, сколько требуется, это существенно снизит потребляемую им энергию;
  5. Чистить фильтр пылесоса для улучшения тяги и снижения энергопотребления;
  6. Утепляйте помещения для минимального использования электрических обогревателей.

На видео показан бытовой компенсатор реактивной мощности своими руками

На видео используется бытовой компенсатор в виде блока конденсаторных батарей